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A formula is obtained in a corrected form for calculating the field of flow of an incompressible fluid on 

a profile close to a specified profile. 

SUITOSE the flow around a certain profile C is known. Then, a convenient formula [l], which is given in all 
editions of the monograph [2, p. 3951 has been obtained for calculating the flow on a profile c, which is 
close to it (Fig. 1). One correction in the derivation of the above-mentioned formula has been pointed out 
in [3]. There are, however, still errors in the derivation. Below, we present an additional correction to the 
formula for the velocity distribution over a contour which is close to a specified profile. 

Let us specify [2] a conformal mapping of the exterior of the profile C onto the exterior of a unit circle 

by the function 

(= F(z,C), F(-,C)= - (1) 

The function (1) defines the correspondence of points of C and points of the circle < = ere (S = s(e), 

where s is the length of an arc along the profile C). We will denote by n(s) the length of a segment of the 

external normal n to the contour C. In the case of the mapping (l), the line C passes into the line C: , the 

equation of which, up to terms of the second order of smallness with respect to I n(s) I, in logarithmic 
coordinates has the form 

p=l+n[s(B)]d8/ds=1+6(8) (2) 

We will assume that the deviation 6 = s(e) of the curve CT from a circle of unit radius is small such that 

I 6 I< E, I 6’ I< E and 6” I< E, where E is a small quantity. 
The mapping of the exterior of C, onto the exterior of the unit circle I w I< 1 can be represented by the 

superposition 

w=S(z,C~)=F*[F(Z‘C,),C;] (3) 

where w = F,(<, Cr*) is the mapping of the exterior of C,* onto I w I> 1. On differentiating formula (3), we 
obtain 

lFi(z,C~)I=IF~(~,c;)II~(z,c~)I (4 

tPrik1. Mat. Mekh. Vol. 57, No. 6, pp. 167-169, 1993. 

1123 



1124 A. L. GONOR 

The first factor on the right-hand side is determined from the theory of conformal mappings of close 
domains [2] and, when account is taken of the correction in [3f, it has the form 

The second factor on the right-hand side of (4) can be determined, by expanding the function F”(r, C,) 
in a Taylor series in the neighbourho~ of the point 2 of contour C up to terms of the second order of 

smaffness 

F’(z,G,)= F’(z,C)+ F”(Z,C)Az+... (6) 

where & is the distance between points on the contours C and C, Iying on the normal to the contours C. 
The mapping (3) reduces the problem of the flow around the contour C, to the problem of the flow 

around a circular cylinder, and the rna~itu~ of the velocity on C is therefore given by the formula 

Here U, is the value of the velocity at infinity, directed along the real axis and t!S= @+A@, 6, = S, iA@, are 
the arguments of the images of the points z and zO (a fixed point) in the case of the mapping (3) 

Allowing for the fact that the velocity on the contour C 

and making use of formulae (4)-(6) and again (4) for z = c+* we obtain 

where 

sin+-sin6a 
=l+ 

cos0AO - cosOoAt30 

sine- sin f& sinl3-sin90 

As a result, we obtain the required relationship which connects the velocities at the corresponding points 
A and A1 (Fig. 1) of the contours C and C, which lie on a single normal to C 

I~~t=lw- l-6(0)+ 
( 

cos6Ae - COS~~A~, 

sine-SinfJa 
+k2j&t)di - 

0 

(9) 

, l- =lI~&~‘(z,C)/F’(z,G)t 

Expression (9) is the corrected version of the well-known formula in [2] which differs by the presence of 
the factor r and the sign in front of the second term in the parentheses. Note that, according to (9), the 
critical points K and K, (Fig. 1) he on a single normal to the contour C. 

Let us check the result which has been obtained. As the reference profile, we wih consider an elhpse 
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FIG. 1. Fm.2 

(Fig. 2) specified in parametric form (X = aux.Q, y = bsincp) and we will define a close, arbitrary contour 

by the equation 

x=acosQ+mo(Q), y=&sinQ+EpD(Q) (10) 

where E is a small quantity, which characterizes the closeness of the contours C and C, and [m, 
p) = {2coscp/a, 2sin(plb] are the components of the vector of the normal to the ellipse at an arbitrary point 
@(qr) which determines the variation of the contour. Without dwelling on the details, which can be found in 

[4] (expression (12)), we obtain a formula in which a factor r (9) of the form 

will occur. 
In this case, formula (9), when account is taken of the equalities 0 = cp and 0, = 0 yields 

q=2 
Cos+(Q)+S~@;(Q)+ msw9(Q)-SinQ@(Q) 

b2 COSQ a2SinQ 1 
where a, is the local angle of attack to the contour C, which is expressed in terms of the local angle of at 

tack to the ellipse tga, = tga(l+ aq). 
Let us now fix the close contour by specifying its equation in the plane c in the form of a circle: 

p = 1 + s(0) = 1+ a,,, 6 = pp. It can be shown that, in this case, the contour C, is an ellipse with semi-axes a, 

and 4, the equation of which in parametric form is: n=a,cosQ=(a+a,b)c0sQ, y=blsinQ=blsinQ= 

(b+a,a)sinQ. Using (12), we obtain u, =(l+b/a)[l+a,(l-bla)]cosa,. 

On the other hand, the exact velocity distribution over an ellipse [4] is 

vu, =(l+bt /qbxal. q =.z+aob, & =b+q,a(e -&) 

Since b,la, = (bla)+(l-b2 /~‘)a,, + . . . the results are identical. 
Note that, if we had taken a circle as the reference contour in the test example, the factor r = 1 and its 

absence cannot be observed [4]. 
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